Prediction Failure of a Wolf Landscape Model
نویسنده
چکیده
I compared 101 wolf (Canis lupus) pack territories formed in Wisconsin during 1993–2004 to the logistic regression predictive model of Mladenoff et al. (1995, 1997, 1999). Of these, 60% were located in putative habitat suitabilities ,50%, including 22% in suitabilities of 0–9%. About a third of the area with putative suitabilities .50% remained unoccupied by known packs after 24 years of recolonization. This model was a poor predictor of wolf re-colonizing locations in Wisconsin, apparently because it failed to consider the adaptability of wolves. Such models should be used cautiously in wolf-management or restoration plans. (WILDLIFE SOCIETY BULLETIN 34(3):874–877; 2006)
منابع مشابه
Developing a Dynamic Regression Model for Predicting Future Operating Cash Flow
The purpose of this research is to develop a dynamic regression model for prediction of future operating cash flows of firms accepted in Tehran Stock Exchange. So, the information of 250 companies were considered during 2004 to 2017. In this study, operational and economic variables were added to the fundamental model of Bart, Cram and Nelson (BCN). Due to the simultaneous effect of sales growt...
متن کاملA Hybrid Business Success Versus Failure Classification Prediction Model: A Case of Iranian Accelerated Start-ups
The purpose of this study is to reduce the uncertainty of early stage startups success prediction and filling the gap of previous studies in the field, by identifying and evaluating the success variables and developing a novel business success failure (S/F) data mining classification prediction model for Iranian start-ups. For this purpose, the paper is seeking to extend Bill Gross and Robert L...
متن کاملAssessment of Landscape Connectivity and Prediction of Migration Corridors for the Baluchistan Black Bear (Ursus thibetanus gedrosianus Blanford, 1877) in the Southeastern Habitats, Iran
The Baluchistan Black Bear (BBB), a critically endangered subspecies (CR), is distributed in the southeastern Iran. Modelling of landscape connectivity of the BBBs among habitat patches can be insightful for the conservation managers working in Iran. Our study was designed to identify the potential corridors among 31 habitat patches of the BBBs in Iran using the circuit theory method. Habitat s...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
متن کامل